Exercice 1 (Expressions régulières) : Soit l'alphabet $\Sigma = \{a, b\}$.

Pour chacune des expressions régulières suivantes, donner deux mots qui sont reconnus par l'expression, et deux mots qui ne sont pas reconnus.

- 1. $a^{\star}b^{\star}$
- $2. \ a(ba)^*b$
- 3. $a^* | b^*$
- 4. (*aaa*)*
- 5. $\Sigma^* a \Sigma^* b \Sigma^* a \Sigma^*$
- $6. aba \mid bab$
- 7. $(\varepsilon \mid a)b$
- 8. $(a \mid ba \mid bb)\Sigma^*$

Exercice 2 (Opérateurs réguliers) : Soit L_1, L_2, L_3 des langages sur un alphabet Σ .

Dire si les égalités suivantes sont vraies ou fausses :

- 1. $\bigcup_{i>0} L_1^i = L_1^*$
- 2. $L_1L_1^* = L_1^* \setminus \{\varepsilon\}$
- 3. $L_1^{\star} = \{\varepsilon\} \cup L_1 L_1^{\star}$
- 4. $(L_2L_1)^*L_2 = L_2(L_1L_2)^*$
- 5. $(L_1 \cup L_2)L_3 = (L_1L_3) \cup (L_2L_3)$
- 6. si L_1 et L_2 sont finis : $|L_1L_2| = |L_1| \times |L_2|$.

Exercice 3 (Expressions régulières): Soit l'alphabet $\Sigma = \{a, b, c, d\}$.

Donner une expression régulière décrivant :

- 1. l'ensemble des mots sur l'alphabet Σ ;
- 2. l'ensemble des mots non vides sur l'alphabet Σ ;
- 3. l'ensemble des mots sur Σ contenant exactement un a;
- 4. l'ensemble des mots sur $\{a,b\}$ contenant toujours un b directement après un a;
- 5. l'ensemble des mots ne contenant plus de a après le premier b;
- 6. l'ensemble des mots non vides commençant par b et terminant par d sur l'alphabet Σ ;
- 7. l'ensemble des mots sur $\{a, b, c\}$ où chaque paire de a est séparée par exactement 3 lettres;
- 8. l'ensemble des mots sur $\{a, b, c\}$ comportant exactement deux b, où tout a est suivi d'au moins deux c, et qui se terminent par b.

Exercice 4: Montrer que tout langage fini est régulier.

Exercice 5 (Langages réguliers): Soit Σ un alphabet, et $u \neq \varepsilon$ un mot sur Σ .

Montrer que les langages suivants sont réguliers :

- 1. L_1 : le langage des mots qui contiennent au moins une fois une occurrence du facteur u;
- 2. L_2 : le langage des mots qui contiennent au moins deux occurrences disjointes du facteur u;
- 3. L₃: le langage des mots qui contiennent au moins deux occurrences non disjointes du facteur u;
- 4. L_4 : le langage des mots qui contiennent exactement une occurrence du facteur u;
- 5. L_5 : le langage des mots $w \in \Sigma^*$ tels que u est un sous-mot de w.
- 6. L_6 : le langage des mots $w \in \Sigma^*$ tels que w est un sous-mot de u.

Exercice 6 (Mots binaires): Soit l'alphabet $\Sigma = \{0, 1\}$.

- Un **mot binaire** est un mot de Σ^* .
- Un mot binaire normalisé est un mot binaire qui soit commence par un 1, soit est exactement 0.
- La valeur d'un mot binaire $u = u_{n-1} \cdots u_0$ est définie par $V(u) = \sum_{i=0}^{n-1} 2^i u_i$.

Les langages suivants sont-ils réguliers?

- 1. L_1 : l'ensemble des mots binaires normalisés;
- 2. L_2 : l'ensemble des mots binaires dont la valeur est paire;
- 3. L_3 : l'ensemble des mots binaires normalisés dont la valeur est paire;
- 4. L_4 : l'ensemble des mots binaires normalisés dont la valeur est une puissance de 2.

Exercice 7 (Lemme de l'étoile) : Soit l'alphabet $\Sigma = \{a, b, c\}$.

Les langages suivants sont-ils réguliers?

- 1. $\{a^n \mid n \equiv 2 \mod 3\}$;
- 2. $\{a^n \mid n \text{ est un nombre premier}\};$
- 3. $\{a^nb^m \mid n \equiv m \mod 3\}$;
- 4. $\{u \in \Sigma^* \mid |u|_a < |u|_b\};$
- 5. $\{u \in \Sigma^* \mid |u|_c \ge \frac{3}{4}|u|\};$
- 6. $\{u \in \Sigma^* \mid u^R = u\}$ (ensemble des palindromes).

Exercice 8 (Langages locaux): Les langages suivants sont-ils des langages locaux?

- 1. $L_1 = a^* \mid (ab)^*$;
- 2. $L_2 = a^*(ab)^*$.

Exercice 9 (Séparation de langages) : Soit Σ un alphabet.

- 1. Soit L un langage régulier infini sur Σ . Montrer qu'il existe deux langages réguliers infinis sur Σ L_1 et L_2 tels que $L_1 \cap L_2 = \emptyset$ et $L = L_1 \cup L_2$.
- 2. Soit L_1 et L_2 deux langages. On note $L_1 \subseteq L_2$ si $L_1 \subset L_2$ et L_2 contient une infinité de mots qui ne sont pas dans L_1 .

Montrer que si L_1 et L_2 sont deux langages réguliers sur Σ tels que $L_1 \in L_2$, alors il existe un langage régulier L_{sep} tel que $L_1 \in L_{sep} \in L_2$.

Exercice 10 (Lemme de Levy) : Soit Σ un alphabet, et $u, v, w, z \in \Sigma^*$ tels que u.v = w.z. Montrer qu'il existe un unique mot $m \in \Sigma^*$ tel que l'une des deux conditions suivantes soit réalisée :

- (i) w = u.m et v = m.z;
- (ii) u = w.m et z = m.v.

Exercice 11 (Mots et pliages) : Soit l'alphabet $\Sigma = \{0, 1\}$.

On définit la fonction $pl: \Sigma^* \to \Sigma^*$ telle que :

$$pl(\varepsilon) = \varepsilon$$
; $\forall u \in \Sigma^*$, $pl(0u) = pl(u)1$; $\forall u \in \Sigma^*$, $pl(1u) = pl(u)0$;

- 1. Calculer pl(0110101).
- 2. Montrer par récurrence : $\forall (u, v) \in (\Sigma^*)^2$, pl(u.v) = pl(v).pl(u).

On considère une feuille que l'on plie n fois dans le sens vertical, en repliant à chaque itération la partie droite sur la partie gauche. Une fois remise à plat, les plis forment une suite de creux (0) et de bosses (1), qui peuvent donc être codés comme un mot de Σ^* . Notons u_n ce mot.

- 3. Donner les premiers termes de la suite : u_n pour $n \in [0,3]$.
- 4. Donner une relation liant u_{n+1} et u_n .

On note v_n la n-ème lettre du mot u_n .

- 5. Donner la valeur de v_n si n est impair.
- 6. Montrer que $\forall n \in \mathbb{N}, \ v_n = v_{2n}$.
- 7. Calculer v_{3000} .